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Applicability of deep learning for blood 
pressure estimation during hemodialysis based 
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Abstract 

Back ground  In hemodialysis, hypotension occurs due to dehydration and solute removal. Conventional blood 
pressure monitoring during dialysis is intermittent and relies on staff experience and intuition to predict patient blood 
pressure trends based on the amount of water removed on the day and previous trends, which requires hemodialysis 
operations that do not lead to hypotension. Our research group has attempted to estimate blood pressure based 
on the spatial features of facial visible images, including information on facial color, and facial infrared images, includ-
ing information on skin temperature. It is expected to realize early detection of blood pressure decrease during treat-
ment if the blood pressure of dialysis patients can be estimated from their facial visible and infrared images measured 
continuously and remotely. In this study, we verified the applicability of deep learning algorithms in blood pressure 
estimation based on facial visible and infrared images of hemodialysis patients.

Methods  Measured facial visible and infrared images and mean blood pressure (MBP) of hemodialysis patients 
were applied to a convolutional neural network to construct an MBP estimation model based on the spatial features 
of the facial images.

Results  Average blood pressure could be estimated with an error of less than 20 mmHg based on the spatial features 
of the facial images, and the blood pressure estimation accuracy based on the spatial features of the facial infrared 
images was higher than that of the facial visible images.

Conclusion  We found the possibility of applying the deep learning algorithm to blood pressure estimation based 
on the spatial features of facial images.

Trial registration This study is not subject to enrollment in a clinical trial due to the absence of both intervention 
and invasion. The Ethics Review Committee of Jichi Medical University has approved the same interpretation.
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Introduction
Currently, there are about 350,000 patients treated with 
hemodialysis [1], and hypotension occurs in about 40% 
of them [2]. Dialysis-related hypotension can be divided 
into orthostatic hypotension, chronic sustained hypoten-
sion, and intradialytic hypotension [3], and intradialytic 
hypotension is a risk factor for cardiovascular complica-
tions [4].

Hypotension during hemodialysis results from dialysis 
maneuvers such as water removal, vasodilation due to 
components of the dialysate solution, and osmotic hypo-
tension due to solute removal [5]. In hemodialysis, the 
need for water removal and solute removal in a limited 
amount of time causes rapid fluctuations in circulating 
blood volume, and the refilling of fluid components from 
the interstitium to the blood vessels does not occur in 
time, resulting in hypotension.

Blood pressure is the most important monitoring item 
for hemodialysis patients. In most cases, it is measured 
at regular intervals using a non-observational method, 
with a manchette wrapped around the upper arm of the 
limb opposite the vascular access. In the past, staff used 
auscultation and other methods of measurement. In 
recent years, automatic blood pressure monitors built 
into the console have become the norm, and staff labor 
is being saved by measuring at set time intervals, while 
the manchette is wrapped around the patient’s arm. 
Some facilities also use dialysis support systems for cen-
tralized management. However, blood pressure must 
be monitored intermittently in both cases, and the staff 
must rely on their experience and intuition to predict the 
patient’s blood pressure trend based on the amount of 
water removed on the day and past trends, and to operate 
hemodialysis without causing hypotension.

In a previous study, we attempted to construct a model 
capable of predicting blood pressure drops during treat-
ment by applying machine learning to intermittently 
measured maximum and minimum blood pressure and 
pulse pressure information [6]. The ideal way to monitor 
blood pressure is continuously, and if signs of change can 
be detected as early as possible, changes in dialysis condi-
tions, such as the rate of water removal, can be made at 
an earlier time. Remote measurement is also desirable in 
terms of infection control.

On the other hand, researches on remote vital sign 
sensing have been performed. One of the previous stud-
ies on remote blood pressure measurement estimated 
blood pressure from the temporal information of remote-
photoplethysmography (PPG) signals measured from 
facial video [7]. The problem with the method is that 
it takes some time to estimate blood pressure since it 
requires temporal information of the PPG signals. On the 
other hand, our research group has attempted to estimate 

blood pressure based on spatial features of facial visible 
and infrared images [8–10]. Facial visible images contain 
information on facial color, which fluctuates with facial 
skin blood flow. The facial visible images can be regarded 
as a short-term indicator of hemodynamics that can be 
measured remotely since facial color fluctuates rapidly 
with changes in cutaneous blood flow. On the other hand, 
facial infrared images contain information on skin tem-
perature, which fluctuates with facial cutaneous blood 
flow. Facial infrared images can be regarded as a remotely 
measurable long-term indicator of hemodynamics since 
skin temperature fluctuates slowly with changes in cuta-
neous blood flow. We hypothesized that changes in blood 
pressure would cause changes in the dynamics of facial 
skin blood flow, which in turn would cause changes in 
the spatial patterns of facial color and facial skin tem-
perature, and attempted to estimate blood pressure based 
on the spatial patterns, or spatial characteristics, of the 
facial visible and infrared images. We have been able to 
estimate blood pressure with an error of approximately 
10  mmHg or less based on facial visible and infrared 
images measured in controlled environments such as 
room temperature and experimental environments. The 
merit of the blood pressure estimation technology based 
on the spatial features of the facial visible and infrared 
images is not only that blood pressure can be estimated 
remotely, but also that blood pressure can be estimated 
with only one facial image. At this time, blood pressure 
estimation based on facial images in healthy subjects has 
been studied, but not yet in patients. If the facial visible 
and infrared images of a dialysis patient can be meas-
ured continuously and remotely, and the patient’s blood 
pressure can be estimated from these facial images, early 
detection of hypotension during hemodialysis can be 
expected to be realized.

In this study, we verified the applicability of deep 
learning algorithms in blood pressure estimation based 
on facial visible and infrared images of hemodialysis 
patients.

Materials and methods
The approach of this study is shown in Fig. 1. The blood 
pressure estimation model based on the spatial features of 
facial images was constructed using facial visible images, 
facial infrared images, and MBP of hemodialysis patients 
and applied to a convolutional neural network, which is 
one of the deep learning algorithms. We evaluated the 
accuracy of the model using the root-mean-square error 
(RMSE) and correlation coefficient between estimated 
and measured MBP. The present study was conducted 
in accordance with the Declaration of Helsinki and was 
approved by the Ethics Review Committee of Jichi Medi-
cal University (Approval No.: 23-107). Consent for the 
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experiment was obtained in advance from the hemodi-
alysis patients participating in the experiment.

Experimental systems
The experimental system is shown in Fig. 2. The experi-
mental system consists of a visible camera (C920, Log-
itech, Co.) and an infrared thermography camera (A35, 
FLIR Systems, Inc.) for measuring facial visible and infra-
red images, a dialysis machine (DBB-100NX, Nikkiso, 
Co.), and a manchette for measuring the blood pressure 
of the subjects (hemodialysis patients). The visible and 
infrared thermography cameras were placed 50 cm above 
the subject’s head. The resolution of the visible and infra-
red thermography cameras was 1920 × 1080 pixels and 

320 × 256 pixels, respectively. The emissivity of the skin 
is 0.98.

Experimental protocol
The experiment was conducted in a clinic where the room 
temperature was relatively stable. During the experiment, 
subjects were asked to lie on their backs on the bed and 
to free themselves without forcing them to maintain 
their posture. During the experiment, visible and infra-
red images containing the subject’s face were measured 
at 30 fps and 1 fps, respectively, and MBP was manu-
ally measured approximately once every 15 min using a 
dialysis machine. Three hemodialysis patients (herein-
after defined as Subject A-C) participated in the experi-
ment, and each subject participated in the experiment 

Fig. 1  Approach of this study

Fig. 2  Experimental system
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multiple times. The three subjects were male. As for the 
age of each subject at the beginning of the experiment, 
Subject A was 56 years old, Subject B was 83 years old, 
and Subject C was 62  years old. The duration of hemo-
dialysis of each subject was 9 years for Subject A, 5 years 
for Subject B, and 1 year for Subject C. All subjects were 
non-diabetic mellitus and hypertensive. The number of 
experiments is 3 for Subject A, 5 for Subject B, and 2 for 
Subject C. Dialysis conditions vary among subjects. Even 
in the same subject, dialysis conditions may vary from 
day to day on dialysis. The information that affects blood 
pressure during dialysis is ultrafiltration rate, dialysate 
flow rate, and quantity blood flow (QB). Dialysate flow 
rate in each subject and experiment was 500 ml/min. The 
range of ultrafiltration rate and maximum QB in each 
subject and experiment are shown in Table 1.

Creation of facial visible and infrared images
The facial visible and infrared images used to construct 
the blood pressure estimation model were any 30 of the 

facial visible and infrared images measured in the 5 min 
before and after the blood pressure was measured. There 
were times when subjects did not turn their faces toward 
the camera or their faces were hidden by their hands or 
other objects during blood pressure measurement, so 
the data measured at those times were excluded from the 
analysis.

The method of generating the facial visible and infra-
red images was as follows (see Fig. 3). The face area was 
detected by applying the Single Shot Multibox Detec-
tor, which is one of the object detection algorithms, to 
the visible and infrared images containing the subject’s 
face. A total of 68 facial feature points were extracted by 
applying a point distribution model to the detected facial 
regions [11]. Spatially standardized facial images were 
generated by applying an affine transformation based on 
the extracted facial feature point coordinates and tem-
plate coordinates [12]. The aim of spatially standard-
izing facial images is to reduce the effects of individual 
differences in shape and orientation of face. The spatially 
standardized images are hereinafter referred to as the 
facial visible and infrared images. The size of the facial 
visible and infrared images was 201 × 201 pixels.

In particular, the facial visible images contain informa-
tion such as the eyes and nasal bridge, and the luminance 
value of the images may fluctuate due to facial expres-
sions and blinking of the eyes. To reduce these effects, 
a median filter with a kernel size of 20 × 20 pixels was 
applied to the facial visible images to smooth the image.

Creation of a model for estimating blood pressure
A model for estimating blood pressure based on the spa-
tial features of the facial images was created by training 
a convolutional neural network (CNN) on the facial vis-
ible and infrared images. The configuration of the CNN is 
shown in Table 2. In the table, “Input” is the input layer, 
“Conv n” is the nth convolutional layer, “Pool n” is the 
nth mean pooling layer, “Batch Norm n” is the nth batch 

Table 1  The range of ultrafiltration rate and maximum QB in 
each subject and experiment

“Sub.A_1st” in the table indicates the first experiment of Subject A

Subject and 
experiment

Range of ultrafiltration rate 
[L/hour]

Maximum 
QB [mL/
min]

Sub.A_1st 1.15–1.44 253

Sub.A_2nd 1.00–1.28 251

Sub.A_3rd 0.90–1.17 250

Sub.B_1st 0.70–0.96 250

Sub.B_2nd 0.70–1.01 250

Sub.B_3rd 0.70–0.96 256

Sub.B_4th 0.70–0.96 251

Sub.B_5th 0.60–0.85 250

Sub.C_1st 0.75–1.01 255

Sub.C_2nd 0.58–0.83 250

Fig. 3  Method of generating the facial visible and infrared images
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normalization layer, “ReLU” is the layer to which the acti-
vation function, Rectified Linear Unit, is applied, “Drop-
out” is the Dropout layer to prevent over learning, “FC” 
is the total combined layer, “Reg” is the regression out-
put layer, “Size” is the size of the input layer, convolution 
layer filters, and average pooling, and “Number” is the 
number of convolution layer filters. The average pooling 
stride and dropout rate were set to 2 and 0.2, respectively. 
On the other hand, for the training conditions of the 
CNN, the batch size was set to 16, the number of epochs 
to 100, and the initial learning rate to 0.001.

In this study, the model is constructed from the data 
measured in one experiment. Based on the number of 
experiments for each subject, the number of models to be 
constructed is 3 for Subject A, 5 for Subject B, and 2 for 
Subject C. In addition, for each subject, a model trained 
only on facial visible images and a model trained only 
on facial infrared images were constructed for each sub-
ject. To evaluate the generalization performance of these 
models, K cross-validation was performed. The number 
of blood pressure measurements and cross-validation 
are shown in Table 3. “Sub.A_1st” in the table indicates 
the first experiment of Subject A. The number of cross-
validations was less than the number of blood pressure 
measurements due to the exclusion of some data from 
the analysis since the subjects’ faces were hidden during 
the blood pressure measurements. In the cross-valida-
tion, facial images and average blood pressure acquired 

during one blood pressure measurement were used as 
test data, and all facial images and average blood pres-
sure acquired during other blood pressure measurements 
were used as training data, and the training and test data 
were interchanged. Root-mean-square error (RMSE) 
and correlation coefficient (r) between estimated and 
measured MBP obtained from all cross-validations were 

Table 2  Configuration of the CNN

“Input” is the input layer, “Conv n” is the nth convolutional layer, “Pool n” is the nth mean pooling layer, “Batch Norm n” is the nth batch normalization layer, “ReLU” is the 
layer to which the activation function, Rectified Linear Unit, is applied, “Dropout” is the Dropout layer to prevent over learning, “FC” is the total combined layer, “Reg” is 
the regression output layer, “Size” is the size of the input layer, convolution layer filters, and average pooling, and “Number” is the number of convolution layer filters. 
The average pooling stride and dropout rate were set to 2 and 0.2, respectively

Layer no Layer Size Number Layer no Layer Size Number

1 Input 201 × 201 – 18 Conv 5 4 × 4 32

2 Conv 1 4 × 4 8 19 Batch norm 5 – –

3 Batch norm 1 – – 20 ReLU – –

4 ReLU – – 21 Pool 5 2 × 2 –

5 Pool 1 2 × 2 – 22 Conv 6 4 × 4 32

6 Conv 2 4 × 4 16 23 Batch norm 6 – –

7 Batch norm 2 – – 24 ReLU – –

8 ReLU – – 25 Pool 6 2 × 2 –

9 Pool 2 2 × 2 – 26 Conv 7 4 × 4 32

10 Conv 3 4 × 4 32 27 Batch norm 7 – –

11 Batch norm 3 – – 28 ReLU – –

12 ReLU – – 29 Pool 7 2 × 2 –

13 Pool 3 2 × 2 – 30 Conv 8 4 × 4 32

14 Conv 4 4 × 4 32 31 Batch norm 8 – –

15 Batch norm 4 – – 32 ReLU – –

16 ReLU – – 33 FC – –

17 Pool 4 2 × 2 – 34 Reg – –

Table 3  The number of blood pressure measurements and 
cross-validation

“Sub.A_1st” in the table indicates the first experiment of Subject A. The number 
of cross-validations was less than the number of blood pressure measurements 
due to the exclusion of some data from the analysis since the subjects’ faces 
were hidden during the blood pressure measurements

Subject and 
experiment

Number of blood pressure 
measurements

Number 
of cross-
validation

Sub.A_1st 17 16

Sub.A_2nd 20 20

Sub.A_3rd 17 15

Sub.B_1st 18 14

Sub.B_2nd 19 16

Sub.B_3rd 19 14

Sub.B_4th 18 15

Sub.B_5th 19 15

Sub.C_1st 17 16

Sub.C_2nd 18 15
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calculated as a rating of the generalization performance 
of the model.

In addition, Grad-CAM was applied to analyze the spa-
tial features of the facial images that contributed to an 
estimation of MBP. Grad-CAM is a method for visual-
izing which parts of an image are the basis for an infer-
ence in an image recognition task. High feature values in 
Grad-CAM indicate a high likelihood of being the basis 
for an inference.

MATLAB 2021a (MathWorks, Inc.) was used to train 
the CNN and apply Grad-CAM.

Results and discussion
Figure  4 shows the time-series variation of measured 
MBP and ultrafiltration rate in the fifth experiment of 
Subject B (Sub.B_5th), where a marked decrease in blood 
pressure was observed. Ultrafiltration rate remained con-
stant except in the early stages of most experiments, and 
a decrease in blood pressure was observed in all subjects.

Table 4 shows the RMSE and correlation coefficient (r) 
between MBP estimated based on the spatial features of 
facial visible and infrared images and measured MBP. As 
a result, the blood pressure estimation accuracy based on 
the spatial features of facial infrared images was higher 
than that of facial visible images. On the other hand, the 
accuracy of estimating blood pressure varied among sub-
jects. Scatter plots of MBP estimated based on the spatial 
features of the facial infrared images and measured MBP 
in the third experiment of Subject B (Sub.B_3rd), the con-
dition in which blood pressure estimation accuracy was 
high, are shown in Fig. 5. Scatter plots of MBP estimated 
based on the spatial features of the facial infrared images 
and measured MBP measured in the first experiment of 

Fig. 4  Time-series variation of measured MBP and ultrafiltration rate in the fifth experiment of Subject B (Sub.B_5th)

Table 4  RMSE and correlation coefficient (r) between estimated 
and measured MBP

“Sub.A_1st” in the table indicates the first experiment of Subject A

Subject and 
experiment

Facial visible images Facial infrared images

RMSE [mmHg] r RMSE [mmHg] r

Sub.A_1st 17.39 − 0.092 13.69 0.472

Sub.A_2nd 10.17 − 0.037 7.47 0.558

Sub.A_3rd 6.57 0.117 7.32 −0.175

Sub.B_1st 13.71 0.045 13.20 0.016

Sub.B_2nd 8.29 − 0.006 8.59 0.327

Sub.B_3rd 8.84 0.467 6.46 0.715

Sub.B_4th 11.42 0.196 16.44 −0.092

Sub.B_5th 8.57 0.233 7.05 0.406

Sub.C_1st 8.81 − 0.277 8.58 0.032

Sub.C_2nd 5.82 − 0.085 7.10 − 0.124

Fig. 5  Scatter plots of estimated and measured MBP in the third 
experiment of Subject B (Sub.B_3rd)
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Subject A (Sub.A_1st), the condition in which blood pres-
sure estimation accuracy was low, are shown in Fig.  6. 
In a previous study, blood pressure estimation based on 
facial images of healthy subjects was performed [8–10]. 
As a result, it was confirmed that blood pressure could be 
estimated with an error of approximately 10 mmHg. The 
accuracy of blood pressure estimation based on facial 
images of hemodialysis patients in this study was compa-
rable to the accuracy of blood pressure estimation based 
on facial images of healthy subjects.

Next, we analyzed the spatial features that contrib-
uted to blood pressure estimation. The facial infrared 
image measured in the third experiment of Subject B 
(Sub.B_3rd) and the Grad-CAM color map obtained from 
the facial infrared image are shown in Fig.  7. The facial 
visible image measured in the first experiment of Subject 
A (Sub.A_1st) and the Grad-CAM color map obtained 
from the facial visible image are shown in Fig.  8. The 

results in Fig. 7 show that the feature values in the nose 
region are higher, indicating that the skin temperature 
variation in the nose region particularly contributes to 
the estimation of MBP. It is known that skin temperature 
fluctuates with skin blood flow. In particular, the nasal 
region has many arteriovenous anastomoses (AVAs), 
which are larger in diameter than normal capillaries [13]. 
Skin temperature changes significantly with skin blood 
flow fluctuations [14]. It is considered that the skin tem-
perature in the nasal region fluctuated due to blood pres-
sure changes associated with rapid changes in circulating 
blood volume during hemodialysis. On the other hand, 
the feature values around the eyes were higher than the 
results in Fig.  8. From the visible images, we confirmed 
that the subject was blinking during the experiment. It is 
considered that the feature values expressed were caused 
by blinking eyes, not by fluctuations in facial color associ-
ated with blood pressure fluctuations, and that the accu-
racy of blood pressure estimation based on those feature 
values was low.

Limitation
There are three major limitations to this study.

The first limitation is the small number of subjects. 
Since the purpose of this study was to verify the appli-
cability of the deep learning algorithm in blood pressure 
estimation based on visible and infrared facial images of 
dialysis patients, the number of subjects was limited to 
three. In application, it is essential to examine the pos-
sibility of increasing the number of subjects.

The second limitation is that this study did not investi-
gate the preprocessing of facial images. From the results 
of this study, we found the possibility of applying deep 
learning algorithms in blood pressure estimation based 
on spatial features of facial images. However, blood 

Fig. 6  Scatter plots of estimated and measured MBP in the first 
experiment of Subject A (Sub.A_1st)

Fig. 7  Facial infrared image and Grad-CAM color map in the third experiment of Subject B (Sub.B_3rd)
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pressure estimation accuracy was low, especially in blood 
pressure estimation based on facial visible images, due 
to the extraction of spatial features such as eye blink-
ing which is not related to blood pressure fluctuations. 
This result indicates the need for preprocessing of facial 
images. Therefore, the investigation of the preprocessing 
of facial images will be performed in the future study.

The third limitation is that the structure and learning 
conditions of the CNN were fixed in this study. Opti-
mization of the structure and learning conditions of the 
CNN is expected to improve the extraction of spatial fea-
tures related to blood pressure variation and the accuracy 
of blood pressure estimation. Therefore, optimization of 
the CNN structure and learning conditions should be 
considered in the future study.

Conclusion
In this study, we verified the applicability of deep learn-
ing algorithms in blood pressure estimation based on 
facial visible and infrared images of dialysis patients. The 
results showed that average blood pressure could be esti-
mated with an error of less than 20 mmHg based on the 
spatial features obtained by applying CNN, which is one 
of the deep learning algorithms, to the facial images. Fur-
thermore, the blood pressure estimation accuracy based 
on the spatial features of the facial infrared images was 
higher than that based on the spatial features of the facial 
visible images. From the above, we found the possibility 
of applying the deep learning algorithm to blood pressure 
estimation based on the spatial features of facial images. 
However, the blood pressure estimation accuracy was 
low, especially in the blood pressure estimation based on 
facial visible images, due to the extraction of spatial fea-
tures such as blinking eyes that are not related to blood 
pressure fluctuation. In the future, it will be necessary to 

examine the possibility of increasing the number of sub-
jects, image preprocessing, and optimization of the deep 
learning algorithm.
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